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a b s t r a c t

This article provides a short historical overview from Harris and his Economic Order Quantity (EOQ)
formula to the Economic Lot Scheduling Problem (ELSP). The aim is to describe the development of the
ELSP field from the EOQ formula to the advanced methods of today in a manner that suits master and
graduate students. The article shows the complexities, difficulties and possibilities of scheduling and
producing several different items in a single production facility with constrained capacity. The items
have different demand, cost, operation time and set-up time. Set-up time consumes capacity and makes
the scheduling more complicated. Idle time makes the scheduling easier but is bad from a practical point
of view since it creates unnecessary costs due to low utilisation of the facility. A heuristic solution
method is used on a small numerical example to illustrate different solution approaches. The solution
method creates a detailed schedule and estimates the correct set-up and inventory holding cost even if
the facility works close to its capacity.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The Economic Order Quantity (EOQ) has been a known concept in
the manufacturing industry for 100 years. Over the years numerous
methods for calculating economic order quantities have been
developed and these methods have become increasingly advanced
as their creators have aimed to solve more intricate problems. One
of these problems is the Economic Lot Scheduling Problem (ELSP)
which is about calculating economic order quantities and construct-
ing a feasible production schedule for several products that are
produced in the same machine or production facility. This may
sound like a trivial problem but it is indeed intricate and even
classified as NP-hard (Gallego and Shaw, 1997). Due to the complex-
ity of the problem, the reader of ELSP literature must often be well-
read in mathematics to fully understand the solution methods and
apply them to real cases. Therefore, this article aims to describe the
development of the ELSP field from the EOQ formula to the
advanced methods of today in a manner that suits master and
graduate students. The article focuses on the development of the
EOQ formula and the three main approaches in previous literature
that most ELSP methods are based upon, the common cycle solution,
the basic period approach and the extended basic period approach. To
illustrate these approaches, we solve a small numerical example

with our own heuristic method. Using this example, we will show
and argue where the research frontier concerning deterministic
ELSP is. We will also show that the traditional inventory holding
cost approximation may not always hold.

The ELSP problem is found in countless practical applications,
e.g. milling of gear houses, painting of metal rolls, welding of rear
axles, painting of truck components, moulding of brackets, paper
production, etc.; reaching from process industries with more
or less continuous flow to work shops. In many cases it is
financially beneficial for companies to purchase and run one
flexible high-speed machine capable of processing many types of
items, compared to purchase and run many dedicated machines
(Gallego and Roundy, 1992; Segerstedt, 1999). Hence, many
machines produce more than one item. Typically, such machines
are capable only of processing one type of item at a time, and a
set-up is usually required each time the production switch from
one type to another (Gallego and Roundy, 1992). Thus, the
dominant characteristics of a single-machine multi-item ELSP
system are the following: multiple items are processed; only one
item can be produced at a time; the machine has limited but
sufficient capacity; a set-up is required between the processing of
different items; items may differ in cost structure and require
different machine capacity; backorders are not allowed; Item
demand rates are deterministic and constant over time; set-up
and operation times are deterministic and constant over time;
set-up costs and set-up times are independent of production
sequence; inventory holding costs are determined by the value
of stocks held.
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Bomberger (1966) presents a problem and a solution method
from the characteristics of a metal stamping facility producing
different stampings on the same press line. Bomberger's 10-items
problem became a “milestone” concerning ELSP; the problem has
been the test example(s) new suggestions and methods have tried
to solve and compete with. Because of that we present the
problem and a totally scheduled solution of it, to the best of our
knowledge not presented in the same way before.

The article has the following outline: Section 2 provides a short
resume on the early history of EOQ and the Economic Production
Lot (EPL). Section 3 introduces our small numerical example.
Sections 4–6 treat the common cycle solution, the basic period
approach and the extended basic period approach respectively. In
Section 7 we present the Bomberger problem and provide a
complete scheduled solution to it, followed by a short review of
the literature from Bomberger to present time. Finally, in Section 8
we summarise the article and discuss ELSP from a practical point
of view.

2. The early history of EOQ and Economic Production Lot (EPL)

In 1913, Ford Whitman Harris published the first ideas about
the EOQ in “Factory, The Magazine of Management”. Harris (1913)
uses the following notations: M¼the number of units used per
month; C¼the cost of a unit ($); S¼the set-up cost of an order ($);
T¼the manufacturing interval in months; I¼the unit charge for
interest and depreciation on stock; X¼the unknown order size, or
lot size, that is best from an economic perspective. Harris assumes
that the annual interest and depreciation cost is 10%, and he
formulates a total-cost function that, in contrast to most textbooks
of today, calculates the cost per unit instead of the cost per time
interval (day or year) and includes the set-up cost of the average
stock (S/2)

1
240M

ðCXþSÞþ S
X
þC: ð1Þ

Harris states that finding the order size X that minimises Eq. (1)
involves higher mathematics. Harris further continues that “suffice
it to say that the value for X that will give the minimum value […]
reduces to the square root of 240MS divided by C”; an equation
now known as the classic EOQ formulaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
240MS

C

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 12MS

0:1C

r
: ð2Þ

Erlenkotter (1990) presents a compilation of early EOQ litera-
ture and describes Harris' complete career from a production
engineer to a patent lawyer and a founder of a law firm.
Erlenkotter (1990) explains why the EOQ formula also is known
as the Wilson lot size formula and Camp's formula. Wilson (1934)
made the EOQ formula famous when he created and sold an
inventory control scheme based on Harris' ideas. However, he
acted according to the old tradition and did not cite earlier work.
(In the early 1970s the formula was known as the Wilson-formula
in Sweden.) Moreover, in a handbook on cost and production,
Alford (1934) referenced Camp (1922) for a general formula to
determine the EOQ. In the first edition of the “Industrial Enginee-
ring Handbook” published by McGraw-Hill (Maynard, 1956, pp.
8–182), W.W. Hannon correctly identified Harris' work and Taft
(1918), who extends Harris EOQ formula by incorporating a finite
production rate. But in the next edition of the same handbook
another author attributed the EOQ formula to Camp (1922). For
further information about these confusing citations up to the
1970s the reader is referred to Erlenkotter (1990).

We now introduce our own notations that we will use in the
rest of the article d¼demand rate of the item, in units per day;

h¼ inventory holding cost of the item, in money units per unit and
day; A¼set-up cost or order cost, in money units (a fixed cost per
order or production lot); q¼order quantity of the item.

Then, the cost per time unit can be written as a function of q

CðqÞ ¼ dA
q
þh

q
2
: ð3Þ

From Eq. (3) we can see that the cost per unit is

CqðqÞ ¼
A
q
þh

q
2
1
d
: ð4Þ

The resemblances to Harris' equation are h¼0.1C, d¼12M and
A¼S. Grubbstrom̈ (1995) points out that Eq. (4), through algebraic
rearrangements, can be written as

CqðqÞ ¼
h

2dq
q�

ffiffiffiffiffiffiffiffiffi
2dA
h

r !2

þ
ffiffiffiffiffiffiffiffiffi
2Ah
d

r
: ð5Þ

In Eq. (5), the first term is always positive, except when the
expression inside the square is zero, which coincides with the
minimum point of the cost function. The second term, which is
independent of q and thus constant, corresponds to the lowest
possible cost per unit of the order quantity. Hence, both differ-
ential calculus on Eq. (3) and the algebraic expression in Eq. (5)
can be used to derive the EOQ formula

qn ¼ EOQ ¼
ffiffiffiffiffiffiffiffiffi
2dA
h

r
: ð6Þ

It is not known how Harris first derived the EOQ formula but it
is an interesting question due to the fact that Harris had limited
education in mathematics (cf. Erlenkotter (1990)).

Up to now we have assumed that all replenishments happen
instantly, i.e. the production rate is infinite. However, if the
production rate is finite, the assumption of the average inventory
(q/2) changes since the maximum inventory become less than the
order quantity. To handle this, we let κ be the production rate in
units per day and assume that the production is on-going during
the time t. Then, q¼ κt, and since the demand is constant at all
time (even during the production) the maximum inventory is
ðκ�dÞt, which is smaller than the order quantity. t ¼ q=κ so the
maximum inventory can be written q ðκ�dÞ=κ. The average
inventory is half the maximum inventory and hence the cost
function, in money units per time unit, is

CðqÞ ¼ dA
q
þh

q
2
ðκ�dÞ
κ

: ð7Þ

The order quantity corresponding to the minimum cost is
derived through differential calculus on Eq. (7)

qn ¼ EPL¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dA
h

κ
κ�d

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dA
h

1
1�d=κ

s
ð8Þ

This quantity is usually called the Economic Production Lot (EPL)
and the formula, Eq. (8), was according to Erlenkotter (1990) first
derived in Taft (1918). Like the EOQ formula, the EPL formula is
well-known and commonly described in textbooks for under-
graduate and graduate students in operations management and
logistics. Different terms for EPL are used by different authors; e.g.
Buffa (1969) uses minimum cost Production Order Quantity, and
Silver et al. (1998) use Economic Production Quantity.

3. A small numerical example

We will now introduce a small numerical example with a single
machine and multiple items that we will use throughout this article.
Suppose that we have a machine that produces three different items,
A, B and C, with production and demand data as in Table 1. The
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machine can only produce one item at a time and there is a set-up
time that precedes every start of a new item. The capacity of the
machine, i.e. the number of items that can be produced per day,
depends on the number of working hours available. In this example,
we assume that there are 14 working hours available per day, which
means that we can produce 84 pieces of A in one day if we do not
make any set-ups. (An index i is added to distinguish the items. An
operation time, oi, in production time (days) per produced item i, is
also added so that oi ¼ 1=κi.) All notations used in the following
calculations are gathered in Table 2.

To calculate the EPL of the items we apply Eq. (8) on the
data presented in Table 1; qn

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2� 10:5� 500=0:2174Þð1=1

p
� 0:0119� 10:5ð ÞÞ � 235, qn

B ¼ 246, and qn

C ¼ 256, and according to
Eq. (7) the total cost is ∑iððdiAi=qn

i Þþhiðqn

i =2Þð1�oidiÞÞ¼299.40
money units per day. This solution is a lower bound, i.e. the
cost cannot be reduced any further. But, as the set-up time is not
considered in the EPL formula, it is not certain that the order quantities
will cover the demand during the total time of both production and
set-up. However, in this particular example the demand for 230 days
can be produced during less than 192 days with set-ups included.

Rogers (1958) discusses the problem of inventory control in a
single-machine multi-item system and applies the EPL formula to the
items individually. According to his conclusions, it is usually impossible
to construct a feasible production schedule from these calculated
order quantities, since two or more items would have to be produced
at the same time to avoid demand shortages. The problem with such
interference between the items is also discussed and illustrated by
Brander (2006). Hadley and Whitin (1963, p. 54) state that “It is
permissible to study each item individually only as long as there are no

interactions among the items”, and that “There can be many sorts of
interactions among the items”. They mention items competing for
floor space and investments in inventory. Hence, the EOQ and EPL
formulas, which only consider one product at the time, are limited
from a practical point of view.

To calculate economic order quantities in a single-machine multi-
item system and avoid interferences between the items, we need to
handle the items jointly. Hence, consider a machine where several
items are produced ði¼ 1;2;…;NÞ and assume finite production
rates and instant set-ups. Then, for a common time interval, T, during
which all items are produced once, the cost per time unit is

CðTÞ ¼ ∑
N

i ¼ 1

Ai

T

z}|{set�up cost

þ hi
diT
2

ðκi�diÞ
κi

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{inventory holding cost
0
BBB@

1
CCCA

¼ ∑
N

i ¼ 1

Ai

T
þhi

diT
2
ð1�oidiÞ

� �
: ð9Þ

The optimal T that corresponds to the lowest cost is found
through differential calculus on Eq. (9)

Tn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2∑N
i ¼ 1Ai

∑N
i ¼ 1hidið1�oidiÞ

s
: ð10Þ

Eqs. (8) and (9) are often presented in textbooks to introduce a
discussion of cyclic policies (e.g. Nahmias (2009) and Segerstedt
(2009)). However, those equations only find a common cycle
length that minimises the set-up cost and inventory holding cost,
and do not consider the possibility that the available capacity may
be too small to satisfy the required demand.

Table 1
Data for the numerical example.

A B C

Demand rate (units/day) di 10.5 30 17
Machine capacity (min/unit) o0i 10 8 20
Set-up time (min) s0i 30 60 30
Set-up cost (money units, for every set-up) Ai 500 500 1000
Cost/value (money units/unit) ci 500 1600 2000
(money units/day and unit) hi 0.2174 0.6957 0.8696
Shift factor (min/day) K 840
Interest rate (%/year) r 10
Production days (days/year) D 230
Production rate (units/day) κi ¼ K=o0i 84 105 42
Actual capacity (days/unit) oi ¼ 1=κi 0.0119 0.0095 0.0238
Set-up time (days) si ¼ s0i=K 0.0357 0.0714 0.0357
Inv. holding cost (money units/day and unit) hi ¼ cir=D 0.2174 0.6957 0.8696

Table 2
The notations used in this article.

di Demand rate for item i, in units per day; i¼1,2,…,N
hi Inventory holding cost of item i, in money units per unit and day
Ai Set-up cost for item i, in money units per production lot
qi Order quantity for replenishment of item i, in units
κi Production rate for item i, in units per day
si Set-up time of item i, in days per production lot
oi ¼ 1=κi , Operation time of item i, in days per unit
T Production cycle time, in days (time interval in which all items are produced at least once)
fi Frequency, the number of times that item i is produced during a production cycle T
Tinf The shortest possible production cycle time in days, in which all items can be produced with frequencies all equal to one
Tmin The shortest possible production cycle time in days, in which all items can be produced with the chosen frequencies f i (T inf rTmin)
C(f,T) Total cost per day, in money units (depending on chosen frequencies and time interval)
tij Adjusted early start of item i in period j, in days, before the inventory reaches zero
ii Current inventory of item i

f̂ The highest frequency used; maxi f i
� �
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4. The common cycle solution

To take both capacity constraints and interferences between
the items into account, we assume that the items A, B and C are
produced during a common cycle that is repeated successively.
Each time the cycle is finished it immediately starts over again.
Thus, the cycle time, T, must be large enough to cover the set-up
and operation times for all items of the demand during the cycle

∑
i
ðsiþoidiTÞrT : ð11Þ

Eq. (11) can be rearranged to find the shortest possible cycle
time

T inf ¼
∑isi

1�∑ioidi
: ð12Þ

Eqs. (10) and (12) are combined to find the cycle time that
corresponds to the lowest cost

Tn ¼ max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2∑N

i ¼ 1Ai

∑N
i ¼ 1hidið1�oidiÞ

s
; T inf

 !
ð13Þ

and the optimal order quantities are calculated from qn

i ¼ diT
n. This

solution method was showed by Hanssmann (1962) and is known as
the common cycle solution. The solution method guaranties feasible
solutions in the sense that the production can be scheduled without
interferences and that the machine capacity is sufficient. The common
cycle solution to the numerical example is presented in Table 3 and
illustrated in Fig. 1. In Table 3 we have introduced a frequency, f i,
which is the number of times that the item is produced during T. We
will come back to the use of f i later in this article.

According to Eqs. (12) and (13) T inf ¼ 0:77 and Tn ¼ 12:475. The
total set-up cost per day is calculated from ∑if iAi=T

n and the total
inventory holding cost per day is calculated from ∑ihið1�oidiÞdiTn=

ð2f iÞ. The total cost is 320.64 money units per day. During each cycle
the machine is idle for 12.475�10.315¼2.16 days. The idle time is
necessary since the output per day would exceed the demand rate if
the machine would run non-stop, and the inventory would therefore
increase with every cycle. However, from a practical point of view it
seems strange to let the machine be idle for approximately 1/6 of the
total time, since facilities and workforce cost money even during idle
time (cf. Brander and Segerstedt (2009)). When there is much idle
time it could be a good idea to reduce the number of shifts per day and
thus reduce the available production time. But in this particular
example it is not possible to reduce the number of shifts from two
to one (K¼420), since the capacity would become too small to meet
the demand, and si and oi would increase to such extent that no
positive T could satisfy Eq. (11).

5. The basic period approach

Hanssmann's article about the common cycle solution from 1962
was followed by a large amount of articles that treated similar
problems, which we now know as ELSPs. Probably the most well-
known ELSP publicationwasmade by Earl E. Bomberger in 1966 when
he presented his 10-item problem instance that has been cited
extensively in the literature ever since. Bomberger (1966) uses
dynamic programming to calculate order quantities, and he introduces
an item-specific cycle time, Ti, which is the time from one production
start of the ith item to the next production start of that item. Thus,
the production of item i is repeated every Ti units of time. Bomberger
constrains the cycle times Ti to be integer multiples ki of a basic period,
Tb, so that Ti ¼ kiTb, and he restricts the basic period to be large
enough to accommodate production of all items once. Bomberger's
extension of the common cycle solution is called the basic period
approach, and it allows the items to be produced with different
frequencies.

To illustrate the basic period approach we return to our
numerical example (in Table 1). We use the method presented in
Holmbom et al. (2013). The main principle of that method was first
developed by Segerstedt (1999). The principle is to reduce the total
cost by finding an even balance between the set-up cost and the
inventory holding cost of each item. Thus, the ratio between set-
up cost and inventory holding cost of each item should be as close
to 1 as possible. By making the ratios close to “1” we can expect to
find a solution close to the lower bound solution (calculated from
Taft's EPL formula) in which the ratio is equal to 1 for all items.

The frequency, f i, was introduced in Table 3, where we defined it as
the number of times that an item is produced during the cycle time T.
If we look at the common cycle solution in Table 3 we can see that the
largest ratio or inverted ratio (lines 9 and 10 in Table 3) belongs to
item A. Since the ratio of item A is large, item Awould probably benefit
from less frequent production than items B and C, which would
increase the order quantity of item A and hence reduce its ratio.
However, the frequency of item A can hardly be reduced since it is
equal to 1, so instead we increase the frequency of items B and C to 2.
This new solution corresponding to a new set of frequencies (1, 2, 2)
and a new calculated cycle time Tn that minimises the total cost, it is
presented in Table 4 and illustrated in Fig. 2.

With different frequencies for different items the total cost
function (Eq. (9)) becomes

Cðf; TÞ ¼∑
i

f iAi

T
þhi

diT
2f i

ð1�oidiÞ
� �

: ð14Þ

Notice that qi ¼ diT=f i, and that the first part in Eq. (14) is the
total set-up cost and the second part is the total inventory holding
cost. We assume that the inventories are replenished immediately
after they become empty. With different frequencies for different
items the cycle time, T, must be large enough to cover the set-up
and operation times for all items of the demand during the cycle

∑
i
ðf isiþoidiTÞrT : ð15Þ

Therefore, the shortest possible time where the expected
demand rates can be satisfied is

Tmin ¼
∑if isi

1�∑ioidi
¼ 1:35 ð16Þ

and consequently the time corresponding to the lowest cost, with
given frequencies, is

Tn ¼ max
2∑if iAi

∑ihidið1�oidiÞ=f i
; Tmin

� �
¼ 22:48: ð17Þ

The total cost is 311.37 money units per day, which is 9.27
money units less than the total cost of the common cycle solution.
According to Bomberger's restriction, the basic period must be

Table 3
The common cycle solution of the numerical example.

A B C Σ

(1) Frequency: f i 1 1 1
(2) Set-up time: f isi 0.0357 0.0714 0.0357 0.1428
(3) Operation time: oidiT

n 1.559 3.564 5.049 10.172
(4) (2)þ(3) Σ 1.595 3.635 5.085 10.315
(5) Set-up cost/day 40.08 40.08 80.16 160.32
(6) Inv. holding cost/day 12.46 92.98 54.88 160.32
(7) (5)þ(6) Σ 320.64
(8) qn

i ¼ diT
n=f i 131.0 374.2 212.1

(9) Ratio: (5)/(6) 3.22 0.43 1.46
(10) 1/Ratio: 1/(9) 0.31 2.32 0.68
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large enough to accommodate production of all items once.
Therefore, the basic period, Tn=f̂ , must satisfy

Tn

f̂
Z∑

i
siþ

oidiT
n

f i

� �
ð18Þ

where f̂ ¼maxiðf iÞ. In this case the basic period is 22.48/2¼11.24,
and the time for producing all items once is 2.846þ6.566/2þ
9.171/2E10.71. Thus, all items can be produced during the basic
period and the restriction is fulfilled. Bomberger solved the
problem with dynamic programming; first finding a basic period
and then deciding the frequency of each item. Unlike Bomberger's
method, our method here first decides the frequency of each item
and then calculates the optimal cycle time. Hence, the basic period
is a result of the chosen frequencies and the calculated optimal
cycle time.

6. The extended basic period approach

According to Table 4 and to the largest ratio or inverted ratio, it
might be preferable to increase the frequency of item B. However,
if we increase the frequency of item B one step (i.e. fB¼4, using a
power-of-two policy justified in forthcoming Section 7) Tmin

becomes 2.13 (Eq. (16)) and Tn becomes 29.816 (Eq. (17)), and
the basic period, Tn=4� 7:46, will not fulfil Eq. (18). The solution in
Table 4 is the best basic period solution our method can find.

To find a better solution we need to consider another approach.
In the extended basic period approach Bomberger's restriction on
the basic period is relaxed so that the “period” only must cover the
average set-up times and operation times of all items (Stankard
and Gupta, 1969; Haessler and Hogue, 1976; Doll and Whybark,
1973; Elmaghraby, 1978). Thus

Tn

f̂
Z

∑iðf isiþoidiT
nÞ

f̂
: ð19Þ

By reworking Eq. (19) we end up with the same restriction on
the cycle time as we presented in Eq. (15). But Eq. (19) is, in
contrast to Eq. (18), satisfactory even if we increase the frequency
of item B to “4” as we discussed earlier. Hence, the solution that
was infeasible with the basic period approach is now feasible. The
extended basic period solution is presented in Table 5.

However, relaxing the period length restriction gives us a new
problem. The production of item A requires 3.763 days, item B requires
8.805/4¼2.201 days and item C requires 12.140/2¼6.070 days. In two
of the four periods both item B and item C needs to be scheduled and
therefore those periods must be at least 2.201þ6.070¼8.271 days,
which is longer than Tn=4� 7:45. Thus, all four periods cannot be
equally long. Whenwe cannot schedule the production in equally long
periods the traditional inventory holding cost approximation and the
cost calculations in Table 5 does not hold (cf. Nilsson and Segerstedt
(2008)). The inequalities force the production of item B and item C to
start before the inventories reach zero to avoid shortages. Therefore an
extra inventory holding cost is created, and hence the real total cost is
more than the 301.85 money units shown in Table 5.

How to calculate the extra cost is described in Holmbom et al.
(2013). First, a detailed production schedule is created. The schedul-
ing procedure aims to make the four periods as equal as possible. If
all periods have the same length there is no extra inventory and the
preliminary cost estimation in Table 5 is correct. Second, the potential
“early starts” are calculated. The early starts depend on the difference
between the actual period length and the theoretical period length if
all periods would have been equal. The schedule of the solution in
Table 5 is presented in Table 6 and illustrated in Fig. 3. Early starts are
necessary for item B in periods 1 and 3.

With the extra inventory the total cost becomes (cf. Holmbom
et al. (2013))

Cðf; TnÞ ¼∑
i

f iAi

Tn
þhi

diT
n

2f i
ð1�oidiÞþhi ∑

f̂

j ¼ 1

ditij
f i

 !
¼ 310:37: ð20Þ

The extra inventory cost is ∑ihi∑jðditij=f iÞ ¼ 8:53 money units
per day. Observe that the machine is idle during 5.109 days of the
total 29.816 days to keep the inventory levels stationary over time.
Hence, the machine is idle during 17% of the total time; the same
as for the common cycle solution. The total cost is 1.00 money
units less than the cost of the basic period solution, and 10.27
money units less than the cost of the common cycle solution. This
is the best extended basic period solution that can be found with
the current method.

The set-up times in the numerical example are relatively short.
If they are multiplied with a factor 4 to 2 h for item A and C and 4 h
for item B, the schedule would be like Table 7.

The “optimal” cycle time and the economical frequencies are
still the same, since the costs are unchanged. The idle time and early

Fig. 1. The common cycle solution; time schedule and the inventory of item B.

Table 4
The basic period solution to the numerical example.

A B C Σ

(1) Frequency: f i 1 2 2

(2) Set-up time: f i si 0.036 0.143 0.071 0.250

(3) Operation time: oidiT
n 2.810 6.423 9.100 18.333

(4) (2)þ(3) 2.846 6.566 9.171 18.583
(5) Set-up cost/day 22.24 44.48 88.96 155.69
(6) Inv. holding cost/day 22.45 83.78 49.45 155.69
(7) (5)þ(6) 311.37

(8) qn

i ¼ diT
n=f i 236.1 337.2 191.1

(9) Ratio: (5)/(6) 0.99 0.53 1.80
(10) 1/Ratio: 1/(9) 1.01 1.88 0.56
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starts have changed and the total cost is now 301.85þ2�0.696
(30�1.115/4)¼313.49. The machine is idle during 13% of the time,
and in the common cycle solution of this modified example the idle
time is 14%.

If we assume a complementary facility cost of 300 money units
per hour (5 MU/min, 4200 MU/day) independent of the machine
is idle or not, the overall total cost of the common cycle solution
increases to (12.475�4200þ12.475�4200þ12.475�320.64)/
12.475¼4200þ320.64¼4520.64 MU/day. For the extended basic
period solution the increase is 4200þ310.37¼4510.37 MU/day;
still a better solution than the common cycle solution. The shift
factor, K, is the variable that creates costs. Hence, a significant cost

reduction can be achieved if it is possible to produce the demand
in fewer hours and thus in fewer shifts per day. In cases where the
idle time is large, it is financially beneficial to produce the demand
with a minor K given that T inf is larger than zero but not too large
(approximately o15). The shift factor will not influence the
frequencies; the economical frequencies only depend on the set-up
costs and inventory holding costs.

7. The Bomberger problem

Due to the importance of the Bomberger problem instance in
this research field, we will here present a scheduled solution to it.
The Bomberger problem is presented in Table 8.

We have inverted the production rates in the Bomberger
problem to “capacity” ðoi ¼ 1=κiÞ. The holding cost per unit and
day, hi, is calculated from an original labour and material cost per
unit, ci, multiplied with 0.1 (inventory interest rate) and divided by
240 (days per year) (cf. Bomberger (1966)). Unfortunately, the
original article contains a printing mistake where c2 is presented
as 0.1175 instead of 0.1775. The common cycle solution that
Bomberger presents in the same article, T ¼ 41:17, can only be
replicated if c2 ¼ 0:1775, so it is surely a printing mistake. In the
early 1970s the printing mistake must have been known, but it
seems like no one commented upon it. The first comment may be
in Cooke et al. (2004) but unfortunately some earlier published
articles are based on the wrong numbers. (Segerstedt (1999)
contains another printing mistake concerning hi.)

Table 9 shows the best known solution to the Bomberger
problem found by Doll and Whybark (1973), Goyal (1975) and
Segerstedt (1999).

The Bomberger problem is possible to schedule in 8 equal
periods, see Table 10, and thus we do not need to consider any
early starts or extra inventory.

In the Bomberger problem the utilisation is high and the machine
is idle only during 4.6% of the time. In that respect it is quite surprising
that the production of all items fit into 8 equal periods. It can perhaps
partly be explained by the fact that there are many different items to
schedule, and hence many small pieces of the puzzle to put together.
High utilisation is preferred from a total cost perspective, but too high
utilisation will transform the process to a bottleneck (cf. Hopp (2011))
and create costs such as queuing, delays and more work in process
(WIP). Thus, too high utilisation must be avoided to facilitate short
delivery times, high delivery precision and short throughput times.

The schedule in Table 10 cannot be found if we apply the
scheduling rules of the Holmbom et al. (2013) method strictly. If
we follow that allocation method strictly, we end up with a

Table 5
The extended basic period solution to the numerical example.

A B C Σ

(1) Frequency: f i 1 4 2
(2) Set-up time: f i si 0.036 0.286 0.071 0.036
(3) Operation time: oidiT

n 3.727 8.519 12.069 24.315
(4) (2)þ(3) 3.763 8.805 12.140 24.708
(5) Set-up cost/day 29.78 55.56 65.59 150.92
(6) Inv. holding cost/day 16.77 67.08 67.08 150.92
(7) (5)þ(6) 301.85
(8) qn

i ¼ diT
n=f i 313.1 223.6 253.4

(9) Ratio: (5)/(6) 1.78 0.83 0.98
(10) 1/Ratio: 1/(9) 0.56 1.21 1.02

Table 6
The schedule of the extended basic period solution.

Period
1

Early
start

Period
2

Early
start

Period
3

Early
start

Period
4

Early
start

Production
B

2.201 0.817 2.201 – 2.201 0.817 2.201 –

Production
C

6.070 – 6.070 –

Production
A

3.763 –

Idle: 0.000 0.673 0.000 4.436
8.271 6.637 8.271 6.637

Cumulated:
Actual
length

8.271 14.908 23.179 29.816

Equal
length

7.454 14.908 22.362 29.816

Fig. 2. The basic period solution; time schedule and the inventory of item B. The items are scheduled in descending order according to (1) frequency and (2) production time;
beginning with the item that has highest frequency and longest production time.
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slightly different schedule where all periods are not equal. This is
because the method suggests that item 10 should be scheduled in
periods 1, 3, 5 and 7 instead of periods 2, 4, 6 and 8, which is
required to achieve period equality. The allocation method can be
modified with complementary scheduling rules to find the exact
schedule shown in Table 10. (From a practical point of view the
cost difference is negligible. If we put item 10 in periods 1, 3, 5 and
7, then period 4 contains 23.66 days of production, which in turn
force items 8 and 4 to start 0.24 days early. The total cost per day
increases from 32.07 to 32.10; þ0.09%.)

After Bomberger's publication many researchers and authors
have made different contributions to the ELSP area. Some
well-known references, some already mentioned, are Doll and
Whybark (1973), Goyal (1973, 1975), Haessler and Hogue (1976),
Elmaghraby (1978), Hsu (1983), Axsäter (1987), Zipkin (1991),
Gallego and Roundy (1992) and Bourland and Yano (1997). Among
the more recent publications are Khoury et al. (2001), Soman et al.
(2004), Cooke et al. (2004) and Yao (2005).

Elmaghraby (1978) presents an overview of earlier research.
Lopez and Kingsman (1991) make a review and compare different
solution methods. They argue that the “power-of-two policy”, of
the basic period, is a requirement for achieving schedule feasibility
in practice. Yao and Elmaghraby (2001) also show that the
power-of-two policy simplifies the construction of feasible cyclic

schedules. A recent review is made by Chan et al. (2013) who
summarise the ELSP research during the last 15 years (1997–2012).

Remanufacturing is a production and problem area where ELSP
is also applied; e.g. Tang and Teunter (2006), Teunter et al. (2009)
and Zanoni et al. (2012). Zanoni et al. (2012) use the same
principle as shown in this article; the ratio between the set-up
cost and the inventory holding cost of each item should be as close
as possible to “1”. Segerstedt (2004) shows that the same principle
can be extended to several machines and multi-level production.
The same principle has also been applied to other problems than
ELSP with good results, e.g. the Joint Replenishment Problem
(Nilsson et al., 2007) and the One Warehouse N-retailer Problem
(Abdul-Jalbar et al., 2010).

8. Summary and practical implications

The aim of this article was to describe the development of the
ELSP field from the EOQ formula to the solution methods of today.
We have discussed the early history of EOQ and EPL and showed
the related formulas. We have also discussed the limitations of
these formulas when many different items are produced in the
same machine. In such situations the EOQ and EPL formulas do not
guarantee that the order quantities will cover demand, or the

Fig. 3. The extended basic period solution; time schedule and the inventory of B.

Table 7
The extended basic period solution; with longer set-up times.

Period 1 Early start Period 2 Early start Period 3 Early start Period 4 Early start

Production B 2.392 1.115 2.392 – 2.392 1.115 2.392 –

Production C 6.177 – 6.177 –

Production A 3.870 –

Idle: 0.000 0.077 0.000 3.947
8.569 6.637 8.569 6.637

Cumulated:
Actual length 8.569 14.908 23.477 29.816
Equal length 7.454 14.908 22.362 29.816

Table 8
The Bomberger problem (time unit: days).

Item i 1 2 3 4 5 6 7 8 9 10

di 400 400 800 1600 80 80 24 340 340 400
κi 30,000 8000 9500 7500 2000 6000 2400 1300 2000 15,000
oi 3.333�10�5 1.250�10�4 1.053�10�4 1.333�10�4 5.000�10�4 1.667�10�4 4.167�10�4 7.692�10�4 5.000�10�4 6.667�10�5

Si 0.125 0.125 0.25 0.125 0.50 0.25 1 0.5 0.75 0.125
Ai 15 20 30 10 110 50 310 130 200 5
ci 0.0065 0.1775 0.1275 0.1000 2.7850 0.2675 1.5000 5.9000 0.9000 0.0400
hi 2.708�10�6 7.396�10�5 5.313�10�5 4.167�10�5 1.160�10�3 1.115�10�4 6.250�10�4 2.458�10�3 3.750�10�4 1.667�10�5

M. Holmbom, A. Segerstedt / Int. J. Production Economics 155 (2014) 82–9088



capacity will be enough, during the total time of both production
and set-up. Therefore, we had to consider the items jointly and we
introduced the common cycle solution. With the common cycle
solution we computed a feasible production schedule for a small
numerical example with three items. This production schedule
was further improved when we used the basic period approach to
solve the example. The basic period approach allows the items to
be produced with different frequencies, which often can be cost-
effective. In our example the basic period approach reduced the
total cost per day from 320.64 (the common cycle solution) to
311.37 money units/day. This cost was even further reduced when
we applied the extended basic period approach. In the extended
basic period approach the restriction on the “period” is relaxed,
which can enable better utilisation of the capacity and less idle
time. However, with this relaxed restriction there is no guarantee
that the periods will be equally long and therefore the production
of some items must start before the inventory is empty, which will
lead to a higher average inventory. Hence, the cost calculation
depends on the scheduling and requires a solution method that
creates a detailed production schedule. The cost of the extended
basic period approach solution was shown to be 310.37 money
units, and not 301.85 as the traditional inventory holding cost
approximation suggested; a significant difference that previous
ELSP literature has paid little attention to. But despite that extra
inventory holding cost, the extended basic period solution came
closer to the lower bound solution on 299.40 (derived from the
EPL formula) then the common cycle solution and the basic period
solution.

In a practical situation it is sensible to have a production
schedule that is repeated at regular time intervals to create a
production pattern. In the solution of the Bomberger problem the
schedule would be repeated every 187.40 day, which is a bit
awkward and cumbersome time frame. The production of items
7 and 3 would almost cover the demand of a whole year, and if the
demand changes over time there is a risk for obsolete overstock.
Therefore a too long cycle time should be avoided. The method of

Holmbom et al. (2013) is easy to adapt to different time intervals.
In practical situations the scheduling may be done explicitly for
the items with the highest recommended frequencies, while items
with low demand and frequency (produced once per sixth month
or less) can be scheduled in a buffer every period.

The set-up time is sometimes dependent of the sequence of the
production; e.g. die-casting of plastic products (the set-up time is
shorter if the item has the same colour as the previous produced
item) or manufacturing of pinions and gears (the set-up time is
shorter if the item has the same module or the same size of
the gear tooth as the previous item). The model presented here
does not explicitly consider sequence dependent set-up times, but
it can be handled by creating a schedule based on the average
set-up time.

In a practical situation everything is not deterministic; set-up
times and operation times are often stable but expected demand
rates can change. Therefore the ELSP analysis and calculation must
be done regularly. Brander et al. (2005) show that deterministic
models can be used even if the demand is stochastic. They
emphasise the importance of rules to decide whether the produc-
tion should start or not. Levén and Segerstedt (2007), with
inspiration from Leachman and Gascon (1988), further develop
such decision rules. For example, a decision rule can be based on
the current inventory; if the inventory of an item does not cover
expected demand until the next possibility to produce the item, it
should be produced in the current period. The cover time, ii=di,
where ii is the current inventory of item i, can be used to prioritise
the items to avoid shortages.

Time-varying lot sizes have been studied and suggested by e.g.
Dobson (1987) and Moon et al. (2002). However, even though
time-varying lot sizes work satisfactory in theory there may be
considerable practical disadvantages such as variations in the
material supply and inventory floor space. Time-varying lot sizes
are not compatible with philosophies such as lean production that
strives to eliminate all kinds of variation and promotes standar-
dised working routines. This may be an explanation to the larger

Table 9
The best known solution to the Bomberger problem.

Item i 1 2 3 4 5 6 7 8 9 10

f i 1 4 4 8 4 2 1 8 4 4
Tn 187.40
siþoidiT

n=f i 2.623 2.468 4.197 5.121 2.374 1.500 2.874 6.626 8.715 1.374
f iAi=T

n 0.08 0.43 0.64 0.43 2.35 0.53 1.65 5.55 4.27 0.11 16.04
hið1�oidiÞdiTn=ð2f iÞ 0.10 0.66 0.91 0.61 2.09 0.41 1.39 7.23 2.48 0.15 16.03

32.07

Table 10
The extended basic period solution to the Bomberger problem.

Item Period

1 2 3 4 5 6 7 8

8 6.626 6.626 6.626 6.626 6.626 6.626 6.626 6.626
4 5.121 5.121 5.121 5.121 5.121 5.121 5.121 5.121
9 8.715 8.715 8.715 8.715
3 4.197 4.197 4.197 4.197
2 2.468 2.468 2.468 2.468
5 2.374 2.374 2.374 2.374
10 1.374 1.374 1.374 1.374
6 1.500 1.500
7 2.874
1 2.498
Σ 21.962 22.160 23.336 22.160 21.962 22.160 22.960 22.160 178.86
Idle 1.463 1.265 0.089 1.265 1.463 1.265 0.465 1.265 8.54
ΣΣ 23.425 23.425 23.425 23.425 23.425 23.425 23.425 23.425 187.40
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interest for fixed order quantities. In the literature review by Chan
et al. (2013) on recent research trends of ELSP only 11% of the
articles dealt with time-varying lot sizes.

Reports of ELSP implementations in practice are rare, but van
den Broecke et al. (2005, 2008) report about successful applica-
tions of a variant of the method presented by Doll and Whybark
(1973), and Taj et al. (2012) report about successful applications of
a model similar to Segerstedt (1999).

Hopefully this article can be used to quickly introduce master
and graduate students to the practical and theoretical problem
ELSP found in countless industrial processes.
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