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This work examines the bullwhip effect generated and suffered by each level
of a four-stage beer game supply chain when different demand scenarios are
considered. The paper shows that the actors who generate lower bullwhip are
those who suffer more from its effects. Moreover, a new definition of an inventory
oscillations measure based on bullwhip definition is introduced. Finally the paper
verifies that the new measure of inventory oscillations provides more information
on supply chain performance than the bullwhip measure.

Keywords: Bullwhip effect; supply chain dynamics

1. Introduction

The bullwhip effect refers to the phenomenon that occurs in a supply chain when orders
submitted to suppliers have a greater variability than those received from customers.
This causes a distortion and amplification of demand variability moving up in the supply
chain (Lee et al. 1997). The consequence of such orders variance increase is the need for
larger stocks, extra production capacity, and more storage space (Chatfield et al. 2004).

The first academic description of the phenomenon is generally attributed to Forrester
(1961) who explained that the bullwhip effect is due to the lack of information exchange
between actors in the supply chain as well as to the existence of non-linear interactions.
Over the years countless studies have been made regarding this phenomenon and the
literature about it is considerable (Kahn 1987, Baganha and Cohen 1998, Lee et al. 1997,
2000, Metters 1997, Chen et al. 2000, Chatfield et al. 2004, Geary et al. 2006).

Most of these studies aimed at demonstrating the existence of the bullwhip effect and
at identifying its causes or possible countermeasures. In particular, Lee et al. (1997, 2000)
identify the main causes of the bullwhip effect in demand signal processing (i.e. incorrect
demand forecasting), rationing game and lead-time, order batching and prices variations.
They also indicate some countermeasures, amongst them: reduction of uncertainty along
the supply chain by providing each stage with complete information on customer demand,
and lead-time reduction by using EDI (electronic data interchange). Moreover they
quantify the benefits on the bullwhip effect of such countermeasures for a multiple-stage
supply chain with non-stationary customer demands.

Chen et al. (2000) measure the impact of information sharing on the bullwhip effect
for a two-stage, order-up-to inventory policy-based supply chain. They demonstrate that
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the bullwhip effect can be reduced but not completely eliminated by centralising demand

information. Dejonckeere et al. (2004) present a summary of the impact on the bullwhip of
different forecasting techniques together with an order-up-to inventory policy, both with

and without information enrichment, whereas Chatfield et al. (2004) analyse the impact of

stochastic lead time and information quality on the bullwhip. They consider three different
bullwhip measures:

(i) the standard deviation of the order quantities at each node,
(ii) the ratio of the order variance at node ‘k’ to the order variance of the customer

and
(iii) the ratio of the order variance at node ‘k’, to the order variance at node ‘k� 1’.

Different techniques have been applied to reduce the bullwhip effect and among them

genetic algorithms (O’Donnell et al. 2006), fuzzy inventory controller (Xiong and Helo
2006), distributed intelligence (De La Fuente and Lozano 2007).

Techniques to reduce the bullwhip effect based on considering the supply chain as

a dynamic system and the application of control techniques are summarised by Sarimveis

et al. (2008). These control methodologies span from the application of a proportional
control (Disney and Towill 2003, Chen and Disney 2007) to highly sophisticated tech-

niques, such as model predictive control (Tzafestas et al. 1997). Finally, Strozzi et al.
(2008) propose a new chaos theory technique that consists of measuring the divergence

of the system in state space and reducing the bullwhip and the costs connected to it by

reducing that divergence.
This work differs from previous studies in several ways. First, we focus on how the

actor’s position in the supply chain influences his responsibility in the bullwhip generation,

as well as his predisposition to suffer from bullwhip. As a consequence, we analyse the
bullwhip effect generated and suffered by each level of the supply chain in different

customer demand scenarios when information is not shared and the order policy changes

from a nervous to a calm behaviour. In particular, we measure the generated and suff-
ered bullwhip according to a single-stage and multi-stage variance amplification model

(Chatfield et al. 2004) and we show that supply chains are ‘unfair’ systems: the stages

that are more responsible for the bullwhip generation are those that suffer less from it.
Second, we extend the definition of bullwhip to variables other than the orders, i.e. to

stock levels. In this way more significant information on supply chains performances
can be obtained from the bullwhip analysis. Third, we compare the outcomes of the

measure of the order oscillations, i.e. the bullwhip effect and the inventory oscillations,

with the overall cost faced by each supply chain actor. The comparison shows the
effectiveness of the proposed measure in depicting the overall cost trend along the supply

chain.
To carry out our analysis we consider and simulate the beer game supply chain con-

sisting of one retailer, one wholesaler, one distributor and one manufacturer. In Section 2

we describe the beer game supply chain model, the inventory policy, the forecasting

technique and the order policy used. In Section 3 we demonstrate the inverse relation

between generated and suffered bullwhip, whereas in Section 4 we extend the bullwhip

definition to stock levels and analyse again the generated and suffered bullwhip by means

of the new definition. In Section 5 we compare the previously obtained outcomes with the

costs and the oscillation in the effective inventory level (i.e. the sum of inventory level and

backlogs). Finally, in Section 6 we conclude with the discussion of our results.
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2. The beer game supply chain model

Consider a simple supply chain (composed of one retailer, one wholesaler, one distributor
and one manufacturer) in which in each period, t, an actor observes his inventory level and
places an order, Ot, to the upstream supply chain stage. There is a minimum lead time
between the time an order is placed and when it is received, such that an order placed at the
end of period t is received at the start of period tþ 3 (if, of course, the supplier inventory
is sufficient to satisfy the customer order).

The manufacturer has unlimited production capacity and each actor has unlimited
storage capacity.

We consider four types of final customer demands (see Figure 1) and we use them for
developing and studying four different scenarios.

2.1 The model equations

Each actor follows a simple order-up-to inventory policy in which the order-up-to
point, Q, is:

Q ¼ DINVþ � �DSL ð1Þ

where DINV and DSL are the desired inventory level and the desired stock in transit
directed towards the respective actor and � is a parameter whose value ranges from
0 to 1 (see below for further details on �).

Figure 1. Types of final customer demand (COR) analysed: (a) step; (b) step with noise with
variance 1; (c) cyclic; (d) cyclic with noise with variance 1.
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We assume that the forecasting technique used in every stage is exponential smoothing.
In particular, in each period, t, for each actor, the expected demand, EDt, depends on
the actual demand for the previous period, i.e. the incoming orders at time t� 1, IOt�1,
as well as on the expected demand for the past period, EDt�1. That is,

EDt ¼ � � IOt�1 þ ð1� �Þ �EDt�1 ð2Þ

where � (0� �� 1) is the weight given to the incoming orders with respect to the expected
demand.

The order Ot each actor places at time t, to the upstream supply chain stage is

Ot ¼ maxf0,O �t g ð3Þ

where

O�t ¼ EDt þ ASt þ ASLt ð4Þ

with ASt and ASLt the stock and stock in transit adjustment, respectively. We can write
them as

ASt ¼ �S � ðDINV� INVt þ BLtÞ ð5Þ

ASLt ¼ �SL � ðDSL� SLtÞ ð6Þ

where INVt and BLt are the inventory and backlog levels experienced by the actor at time t
and SLt is the actual stock in transit directed toward the same actor, with �S (0��S� 1)
the stock adjustment rate and �SL the stock in transit adjustment rate. Higher values of
these parameters correspond to a nervous policy in which the actor quickly changes his
order when the stock or the supply chain moves away from the desired value.

Since �¼�SL/�S, Equation (4) can be rewritten as:

O�t ¼ EDt þ �s � ðQ� INVt þ BLt � � �SLtÞ ð7Þ

2.2 The experimental campaign

We used Matlab 7.0 to simulate the above described supply chain model. We assume that:
�S and � are the same for the four stages; �¼ 0.25 and Q¼ 14; the initial inventory of each
actor is 12 and the simulation run length is 60 periods as in Mosekilde and Larsen (1991).

The simulation is performed according to the four types of final customer demand
scenarios depicted in Figure 1 and to a single-stage and multi-stage approach. With the
single-stage approach we measure the increase of bullwhip that occurs at each supply chain
stage, i.e. the bullwhip generated by each stage; with the multi-stage approach we measure
the bullwhip increase going upstream in the supply chain with respect to the customer
demand, i.e. the bullwhip suffered by each stage.

Figure 2 synthesises the eight simulation runs performed called experimental
campaigns. For each customer demand we have considered two cases: in the first, the
variance amplification for each level is measured with respect to the downstream actor,
while, in the second, to the final customer. For each simulation run we have recorded
the incoming and outgoing orders and the inventory levels of each sector. We need these
data for demonstrating the inverse relationship between generated and suffered bullwhip
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and for extending the traditional bullwhip definition. We have also monitored costs and
inventories maximum oscillation. The costs each actor must face are calculated using
Equation (8) where CINV and CBL are the unitary inventory and backlog costs respectively
(CINV¼ 0.50 $/unit, CBL¼ 2 $/unit; Sterman 1989).

COST ¼ �tINVt �CINV þ�tBLt �CBL ð8Þ

The inventories’ maximum oscillations are the maximum oscillations of the effective
inventory (INVt�BLt) that occur during the 60 weeks in the whole supply chain (Caloiero
et al. 2008).

3. Generated and suffered bullwhip analysis

According to the single-stage model the bullwhip is calculated as the ratio of the variance
of orders placed by each level to the variance of orders coming from the downstream level
in the supply chain. Hence the bullwhip generated by the level i (BOGi) is

BOGi ¼ Varðorder placed by level ‘i’Þ

Varðorder placedby level ‘i� 1’Þ
ð9Þ

The bullwhip surfaces are generated for each customer demand scenario, each supply
chain level and for variations in �S and �, i.e. when the behaviour of the four actors in
response to their own stock level and to the stock in transit directed towards them change
(see Figure 3).

crwdm

final customer demand approach recorded data

crwdm

crwdm

crwdm

incoming and 
outgoing orders at 
each supply chain 

stage and inventory 
levels of each supply 

chain actor

crwdm

crwdm

crwdm

crwdm

simulation run

run1 

run2 

run3 

run4 

run5 

run6 

run7 

run8 

Figure 2. Synthesis of the experimental campaigns.
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Since we are interested in calculating how the actor’s position in the supply chain

influences his responsibility in the bullwhip generation (as well as his predisposition

to suffer from bullwhip) and, since we do not focus on how the behaviour of each actor

increases the bullwhip, we synthesise the surfaces by means of their average values.
In Figure 4 the average values of the bullwhip generated by each supply chain actor are

represented for all the demand scenarios.
It is possible to observe that mean values for each of the four demand scenarios

decrease, moving upstream in the supply chain. This is coherent with the bullwhip

analysis results obtained by Chatfield et al. (2004) for a random customer demand with

differing degree of communication among levels. The retailer is the one who has greater

responsibility in the creation of the bullwhip, responsibility that gradually decreases going

upstream in the supply chain. This may be due to the presence of multi-level inventories

which tend to damp the demand fluctuations.
Concerning the bullwhip suffered by each supply chain level (BOSi), that refers to

a multi-stage model. In this case, the bullwhip is measured as the ratio between the

variance of orders placed by each level to the customer order rate (COR) variance, so that

BOSi ¼ Varðorder placedby level ‘i’Þ

VarðCORÞ
ð10Þ

Looking at the definitions given by Equations (9) and (10), in the case of the retailer the

bullwhips generated and suffered are the same. This means that the retailer suffers only the

bullwhip that he generates. Obviously, the retailer also suffers negative consequences from

the bullwhip of the other levels. In fact, if the other actors make wrong demand forecasts

Figure 3. Surface of the bullwhip suffered by retailer in the case of multi-stage model and for
customer demand given by scenario 3 plotted with respect to the �S and � parameters.
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they cannot satisfy the retailer’s demand and the retailer himself will experience an increase

in backlog.
Again we consider the mean values of the bullwhip suffered by each supply chain

level for the four demand scenarios. The corresponding graph is shown in Figure 5.

The situation is now reversed compared with the single-stage model: average values of

bullwhip grow exponentially moving upstream in the supply chain. Here the effects are

more dramatically detectable in the most remote areas far from the customers, who

although they are less responsible for creating this phenomenon, are the most affected

because of their position in the supply chain.

4. Generated and suffered inventory oscillations analysis

In this section we define a measure of the inventory oscillations similar to the bullwhip

measure for order oscillations and we repeat the analysis performed in Section 3 on the

bullwhip measure. The introduction of this new definition has the objective to give some

insights on the consequences that the inventory oscillations have on inventory manage-

ment costs.
According to the single-stage model, the inventory oscillations generated by each

level i, IOGi can be quantified as the ratio between the variance of the inventory of the

considered supply chain level to the inventory variance of the downstream level, so that

IOGi ¼ VarðInventory of level ‘i’Þ

VarðInventory of level ‘i� 1’Þ
ð11Þ

Figure 4. Decreasing of mean bullwhip values going upstream in the supply chain in the case of the
single-stage model.
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This definition cannot be applied to the retailer level since the final consumer does not

have any inventory.
In Figure 6 the inventory oscillations mean values are represented for wholesaler,

distributor and factory for every demand scenario. Again, as in the case based on orders,

the factory is the level which amplifies least the oscillation in the inventories and this

phenomenon increases going downstream in the supply chain.
According to the multi-stage model, the inventory oscillations suffered by each supply

chain level (IOSi), is calculated as the ratio between the inventory variance of the level to

the retailer inventory variance (i.e. to the inventory variance of the nearest level to the final

consumer):

IOSi ¼ Varðinventory of level ‘i’Þ

Varðinventory of retailerÞ
ð12Þ

In all considered scenarios the distributor is the level that mainly suffers the inventory

oscillations as Figure 7 depicts.
The advantage of the factory in comparison to the distributor is due perhaps to the

hypothesis of there being no production limit. This hypothesis does not affect the orders

that the factory sends to production, but allows the factory to damp the oscillations

induced by the distributor orders before they reach the inventory manufacturer level.

This means that the factory without capacity constraints behaves like a filter of the

inventory variance amplifications. Then the factory, which is the last level of the supply

chain, suffers a greater variability in demand than the other areas but not in the

inventories.

Figure 5. Increasing of mean bullwhip values going upstream in the supply chain in the case of the
multi-stage model.
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5. Generated costs and effective inventory maximum oscillation analysis

We are now interested in calculating the costs supported from each level to manage its

inventory in each considered scenario. The aim is to see if there is a relationship between

the bullwhip effect and the costs the actors must face. As we know, the objective of the

Figure 6. Average values of inventory oscillations with respect to supply chain sector, single-stage
model.

Figure 7. Average values of inventory oscillations suffered by the actors in a multi-stage model.
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single actor is to manage his inventory so as to minimise a cost function during the
considered time horizon (60 weeks). The total cost for each level at the end of week ‘t’ is
given by the sum of the inventory and backlog costs:

CostðtÞ ¼ InventoryðtÞ � 0:50þ Back logðtÞ � 2 ð13Þ

Analysing the costs for the stock associated with each level of the supply chain, when
the parameters �S and � change simultaneously between 0 and 1, we obtain the mean
values represented in Figure 8.

The distributor is always the level that faces more elevated costs for managing
inventory. The reason for this is probably the higher variability in the inventory suffered at

the distributor level than can be detected using the new measure of inventory oscillations,

i.e. Equation (12) (see Figure 7). Moreover, we can observe that this behaviour is

independent of the considered demand scenario and it seems more related to the unlimited

factory production assumption that allows the replenishment of inventory when requested.

It is not strange that the suffered inventory oscillations measure (Equation (12)) better

corresponds to the costs of each level in comparison with the suffered bullwhip measure

(Equation (10)), since inventories are considered in the cost calculation.
In order to complete our study, we also calculate the maximum oscillations in the

stock level during the 60 weeks. When the inventory is equal to zero, backlogs are
created: therefore, the single consideration of the inventory does not allow it to quantify
the eventual gravity of the situation in a clear and complete way. In order to consider at
the same time inventory and backlogs, the measure introduced by Caloiero et al. (2008) is
used in this analysis. In particular, the effective inventory (INVt�BLt) maximum
oscillations have been considered as

maxtðINVt � BLtÞ �mintðINVt � BLtÞ ð14Þ

Figure 8. Average management costs of the inventory for each level.
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Average values of maximum oscillations are represented in Figure 9. It is possible to
observe that they give the same information as the costs presented in Figure 8.

Once again, as we can see from Figure 9, the distributor is the level that faces the widest
inventory oscillations. Since the factory is not characterised by production capacity
constraints, as highlighted in Section 4, the manufacturer can maintain, better than the
distributor, his inventory level near the desired one. As a consequence, the difference
between his maximum and minimum effective inventory levels is smaller than the one
characterising the distributor, and this explains why the maximum oscillation drops off
at the manufacturer stage. The wider the oscillations, the greater the associated costs
for the stock.

Using maximum oscillations and considering backlog, we can improve the description
of the costs depending on the demand scenario and we can see that the distributor is
always the actor with the higher costs (Figure 8). Moreover, using the extended definition
of the bullwhip (Equations (11) and (12)), we can observe that the distributor has the
widest oscillations in the inventory (Figure 7), but that the distributor is not the main actor
in their generation (Figure 6).

6. Summary

In this work we have demonstrated that, with reference to the phenomenon known as the
bullwhip effect, supply chains are unfair systems. In fact, by means of a bullwhip analysis
performed on the beer game supply chain according to a single-stage and a multi-stage
model, we have shown that the levels that are more responsible for the bullwhip generation
are those that suffer less from it. In particular we have found that the bullwhip generated
and suffered by each level exponentially decreases (see Figure 4) and increases

Figure 9. Average inventory maximum oscillations with respect to supply chain sector.
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(see Figure 5), respectively, going upstream in the supply chain. As a consequence the
factory is the level most hit by the bullwhip effect and it is the one least responsible for its
generation. Here, it is worth noting that this first outcome of our work, i.e. the proof of an
inverse relation between generated and suffered bullwhip, confirms one of the most
important behavioural hurdles characterising supply chains: the inability of each stage to
learn from its actions, since the most relevant impact (of the actions) occur elsewhere in the
chain (Chopra and Meindl 2001).

Moreover, in this paper we also focus on a new definition of inventory oscillations
that is an extension of the bullwhip definition. As it is well known, the bullwhip based
on orders is not always a good measure of the performances of the different supply chain
levels. Since, in the beer game supply chain, the objective of each actor is to manage
his inventory so as to minimise a cost function, we have tried to define a new indicator
capable of providing some insight into how the different supply chain actors perform
in terms of costs. In particular, while the cost function is given by the sum of inventory
and backlog costs, we have defined an inventory oscillation measure as the bullwhip
but for inventories instead of orders. At first glance, we have not considered backlogs
into the proposed inventory oscillations quantification. By means of such a new measure,
we have studied again the relation between the generated and the suffered model.
We have found that the inventory oscillations are suffered more at the distributor level,
which, again, is not the level that has the major responsibility for their generation.
The effectiveness of the new measure has been demonstrated by the fact that the cost
function along the supply chain follows a similar pattern as the suffered inventory
oscillations defined in Equation (12) (see Figures 7 and 8) and the distributor is who
spends more to manage his inventory.

Finally, to take into account the backlog costs, we have applied to the beer game
supply chain presented in Section 2 the bullwhip analysis exploiting the measure
introduced by Caloiero et al. (2008) in which the effective inventory maximum oscillations
are considered. We have found that this measure has a complete correspondence with
the cost trend along the supply chain, and, at least in the cases considered that measure
can differentiate even the demand pattern. Notwithstanding the higher accuracy of the
measure of Caloiero et al. (2008) in detecting the trend of the costs along the supply chain,
the measure we have proposed seems more suitable to a real industrial context where the
information on backlogs is often not available.

This paper would be incomplete if we did not mention the limitations of our model and
analysis. The main drawback of the latter is given by the fact that we have not considered
the impact of information quality, i.e. of centralised demand information on the generated
and suffered bullwhip. However, extending our results to the centralised demand infor-
mation case is straightforward and we have already planned this as the next research step.
With reference to our model, the main limitations deal with the simplifying hypotheses
of the beer game. Among them, it is worth mentioning the use of a simple exponential
smoothing forecasting model and the manufacturer’s infinite production capacity.
In particular, in the cases of cyclic demand, a different forecasting model, the Winters
model for instance, could be more suitable. Nevertheless, the results obtained in the four
demand scenarios, even if different in values, are characterised by the same trend along
the supply chain (see Figures 4 to 9). As a consequence, since for a step demand the
simple exponential smoothing forecasting model is appropriate, we could conclude that
by using a better fitting forecasting model for the cyclic demand scenario the levels
more responsible for the bullwhip generation are those that suffer less from it. Finally, the
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unlimited production assumption for the manufacturer could be responsible for the trend
of the inventory oscillations measure, which increases from the retailer to the distributor
and then decreases at the manufacturer. As a matter of fact, an infinite production
capacity could allow the replenishment of the manufacturer inventory when requested,
and, consequently, the smoothing of the inventory variance increase as well as the increase
of the maxima inventory oscillations. To confirm or disconfirm such hypothesis, a study of
the generated and suffered inventory oscillation measure in the case of production capacity
constraints at the manufacturer has been already planned.
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Appendix

In Table 1 the list of all the symbols and acronyms used is provided in alphabetical order.

Table 1. List of symbols and acronyms.

Symbol or
acronym Meaning

�S Stock adjustment rate (0��S� 1).
�SL Stock in transit adjustment rate (0��SL� 1).
ASt Stock adjustment at period t. ASt¼�S � (DINV� INVtþBLt).
ASLt Stock in transit adjustment at period t. ASLt¼ �SL � (DSL�SLt).
� Ratio between the stock in transit adjustment rate and the stock adjustment rate.
BLt Backlog level experienced by the actor at time t.
BOGi Bullwhip generated by the level i. BOGi¼ var (order placed by level ‘i ’)/var (order

placed by level ‘i� 1’).
BOSi Bullwhip suffered by the level i. BOSi¼ var (order placed by level ‘i ’)/var (COR).
CBL Unitary backlog cost.
CINV Unitary inventory cost.
COR Customer order rate.
COST Costs the actor must face. COST ¼ �tINVt �CINV þ�tBLt �CBL:
DINV Desired inventory level of the actor.
DSL Desired stock in transit of the actor.
EDt Expected demand at period t.
INVt Inventory level experienced by the actor at time t.
IOt Incoming orders at time t.
IOGi Inventory oscillations generated by the level i. IOGi¼ var (inventory of level ‘i ’)/var

(inventory of level ‘i� 1’).
IOSi Inventory oscillations generated by the level i. IOSi¼ var (inventory of level ’i ’)/var

(inventory of retailer).
Ot Order placed by the actor at period t.
Q Order-up-to point quantity. Q¼DINV+ � �DSL.
SLt Stock in transit directed toward the actor at time t.
� Parameter of the exponential smoothing forecasting technique (0� �� 1). It represents

he weight given to the incoming orders with respect to the expected demand.
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